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A method for investigating free vibrations rectangular non-homogeneous shells
is proposed. By non-homogeneity, we de"ne a chage of sti!ness of shell bending
caused by an introduction of another material or change of a shell thickness is
de"ned. It is assumed that a shell possesses an arbitrary value of rectangular parts
with di!erent bending sti!ness.
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1. INTRODUCTION

The important contributions to the theory of plates and shell dynamics have been
brought in by Timoshenko and Voinovskij-Kreiger [1], Vlasov [2], Vol'mir [3],
Bolotin [4], Filippov [5], Satchenkov [6], Krysko [7] and others. Many of the
dynamical problems of vibration of conical shells with classical boundary
conditions in a frame of both linear and non-linear theories have been solved.
A review of plate and shell vibration theories for various boundary conditions and
di!erent shape of plates and shells has been given in monographs [8, 9], and for
homogeneous plates and shells in the works of Liessa [10] and Cowper et al. [11].

It should be emphasized that vast literature on plate and shell vibration has
recently been published. Among others, literature reviews on recent plate and shell
vibrations can be found in references [12}14].

In reference [15}17], free vibrations in relation to the boundary conditions and
geometrical parameters have been investigated using the Ritz method with higher
approximations to the plates and shells. The open cylindrical shells dynamics has
been analyzed in reference [18], and the trapezoidal plates have been analyzed in
reference [19].

More literature on free vibration analysis using the Ritz method with higher
approximations for plates are given in references [20}23].

In this paper the in#uence of bending sti!ness, thickness change and the
geometrical parameters, k

x
"k

y
on the free vibrations of rectangular plates and
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shells have been investigated using the Bubnov}Galerkin method with higher
approximations. As an example, a free support with unstretched (uncompressed)
ribs has been analyzed. The doubly curved shells considered are constituted by
isotropic material which shows in-plane non-homogeneity simply in the sense that
Young's modulus is taken as a function of the in-plane shell co-ordinate
E"E (x, y).

2. ANALYSIS

2.1. PROBLEM DEFINITION

Consider a rectangular shell with x3[0, a], y3[0, b] and thickness with
2h (!h)z)h). An average surface is related to the rectangular co-ordinates with
the origin located in the lower-left corner of the shell. The unit vectors of the
co-ordinates form the right oriented three vectors.

The kinematic Kirchho!}Love model is used. The deformations in an arbitrary
point on the shell are de"ned by the relations
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with u, v denoting the average surface displacements, w (x, y) a de#ection, and k
x
, k

y
the curvatures.

The material of the shell is assumed to be isotropic, elastic and
non-homogeneous governed by Hook's law
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where E"E(x, y).
Integrating equation (3) along the thickness, we get the relationships between

forces and deformations of the form
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Let us consider a movement process between the time moments t
0

and t
1
. The

true trajectories di!er from the other possible trajectories because

P
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where K is the kinetic energy, < is the potential energy, and d@= is the sum of
elementary works of the external forces.

The potential energy
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and the kinetic energy
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are given by equations (6) and (7), where o"o(x, y) is the material density, and
work of the external forces is de"ned by
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Substituting equations (1)}(3) into equations (6) and (7) we can formulate the
variational equation. The latter gives the governing equations as well as the
boundary and initial conditions. We introduce the force function
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Then the variational equation has the form
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From equation (10) we get the equations of motion
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and the deformation continuity relation
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where a
1
(x, y)"1/E (x, y), and ( ) ) denotes a variation of the being sought functions

either w(x, y) or F(x, y).
In addition, we consider the transverse vibration without the occurrence of

elastic waves along the co-ordinates x and y. Therefore, equations (11) are
substantially simpli"ed. Neglecting p

x
and p

y
, and introducing the force function

according to formulae (9) from equations (11) the following hybrid type system is
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obtained: (a) one equilibrium equation
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(b) the deformation continuity equation
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When in equations (13) and (14) we take E"const, o"const and using
integration by parts we "nally obtain the equations
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(L2/Ly2), D"E(2h)3/12(1!k2) denotes the

cylindrical sti!ness, E"E(x, y) the changeable Young's modulus and k the Poisson
coe$cient.

For the purpose of numerical integration, equations (13) and (14) are reduced to
the non-dimensional form using the relations (the non-dimensional parameters are
denoted by bars)
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The non-dimensional equations have the form (bars are omitted)
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The shell bending sti!ness is de"ned with the help of the unit Heaviside's function
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Substituting equation (18) into equation (17) and taking q"0, the following
equations in a hybrid form governing a free vibrations of non-homogeneous shells
are obtained
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where N denotes the number of sti!ness parts; c
1k

, c
2k

are coe$cients of bending
sti!ness and density of the k sti!ness parts [see equation (18)], showing a relative
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change of bending sti!ness modulus and density in relation to a homogeneous shell.
For a homogeneous shell c
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"c

2k
"1. For c

1k
(1 the shell is less sti!, whereas for

c
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'1 the shell is sti!. The same holds true for parameter c

2k
.

3. METHOD OF SOLUTION

The initial equations (19) are solved using the variational Bubnov}Galerkin
method with higher approximations. The functions being sought w, F have the
forms
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Taking into account equation (20) and applying the Bubnov}Galerkin method to
equation (19),
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Applying the same procedure to equation (19) in relation to the spatial co-
ordinates, the following system of ordinary di!erential equations in relation to time
and the following system of algebraic equations is obtained:
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where +n
v,z/1

de"nes the a number of equations in the solving equations system,
and the integrals of the Bubnov}Galerkin procedure are de"ned below:
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The integrals (23) are calculated on a whole average shell surface.
A problem related to the determination of free vibration frequencies of a shell is

reduced to "nding the eigenvalues of the corresponding matrix. When the di!erent
sti!ness parts of a shell occur, a second power of a harmonics frequency cannot be
de"ned explicitly from the equations of shell vibration, because the equations
cannot be split into the isolated equations of the corresponding harmonics. The
double indices vz and ij in the sums are changed into a single indices. First, a right
index is changed keeping notations for the corresponding new indices as vz and ij.

We use the following matrices:
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where J
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are the square matrices of order 2n, and A, AG , B denote the matrix

(column) of the 2n]1 type.
The solution to equations (22), using equation (24), has the following form:

J
2
AG"J

1
A#J

3
B,

J
4
B"J

5
A. (25)

From equation (25) we obtain

B"J~1
4

J
5
A. (26)

Introducing equation (26) into the "rst equation (25) and multiplying the equation
by J~1

4
we get

AG"J~1
2

(J
1
A#J

3
J~1
4

J
5
A)"J~1

2
(J

1
#J

3
J~1
4

J
5
) A"DA, (27)

where

D"J~1
2

(J
1
#J

3
J~1
4

J
5
). (28)



FREE VIBRATIONS OF NON-HOMOGENEOUS SHELLS 709
The D matrix is unsymmetric when the di!erent sti!ness parts occur for which
sti!ness parts occur for which c

2k
O1 (it means that a non-homogeneity of density

occurs). The matrix becomes symmetric for an arbitrary values of sti!ness
coe$cients c

1k
. The matrix eigenvalues are related to second power of free vibration

frequencies. In order to "nd the eigenvalues and eigenvectors of the symmetric
matrix D, we have used procedures which de"ne all eigenvalues are eigenvectors of
the symmetric three diagonal matrix. The latter is obtained from the initial
symmetric matrix D using the Housholder's transformation.

In order to get all eigenvalues and eigenvectors of the real unsymmetric matrix
D it can be reduced to the Hessenberg's form.

In the case of a homogeneous shell the algorithm described fully overlaps with an
analytical solution (3), because in this case the system of solving equations can be
split into the equations related to the di!erent (isolated) harmonics.

4. NUMERICAL RESULTS

As an example of the theory outlined a free support (balls) of a shell on the
#exible unstretched (uncompressed) rib is considered. The following boundary
conditions are introduced:
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In order to solve the equations (19) using the Bubnov}Galerkin method with
higher approximations the expressions for the de#ection w(x, y) and forces F (x, y)
are presented in the forms
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The details are given in Appendix A.
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The results for n"3 are obtained from equation (31). It means that the
dependence of the "rst nine modes of homogeneous and non-homogeneous
squared (j"1) shells versus the di!erent control parameters is investigated. All of
the problems are classi"ed in relation to a form, a number and a relative position of
the sti!ness parts of a shell [Figures 1(a}d)].

Case (a) corresponds to a shell with one rectangular sti!ness part located in the
centre. Case (b) corresponds to the sti!ness part located in the shells "rst quarter.
Case (c) is related to a part with a wide rib located symmetrically in relation to the
shell's axes. Case (d) correspond to the &&perforation'' type: square sti!ness parts are
regularly located on a shell. As the control parameter, a number of those parts
along one shell's side is taken.

4.1. A HOMOGENEOUS SHELL

In Figures 2(a, b), a relation between the frequency of a spherical shell with
a rectangular plane versus curvature of a non-dimensional shell k

x
"k

y
"0!36 is

given. The curves 1, 2, 4, 5, 7, 9 correspond to the mode numbers. Increasing the
curvature shell's parameter all of the modes increase monotonously. The lower
modes are more sensitive to a change of this parameter.

4.2. A NON-HOMOGENEOUS SHELL

During investigation of a non-homogeneous shell vibration for each frequency
the coe$cient K

d
, describing the harmonics dynamics, is introduced. It is de"ned as
Figure 2. Frequencies versus the curvatures of the shell.

Figure 1. Location of non-homogeneous parts of sti!ness on a shell: (a) square part located in
the centre; (b) square part located in the quarter; (c) #exural sti!ness changes along the axes;
(d) &&perforation'' type.
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a relation between the corresponding frequency of non-homogeneous to
a homogeneous shell.

In Figures 3 and 4, the relationship between K
d
and a surface of a central sti!ness

part for a plate (k
x
"k

y
"0) and a shell (k

x
"k

y
"36) are given. The curve number

corresponds to a mode number. The curves lying below that with number
1 correspond to a more soft plate and shell (c

1k
"0,5; c

2k
"1). The curves lying

above that curve correspond to a more sti! one (c
1k
"1,5; c

2k
"1) in comparison

to a homogeneous plate and shell (for a homogeneous plate and shell we have
c
1k
"c

2k
"1).

As it can be seen from the "gures, the coe$cient K
d
of all the modes of a plate or

a shell in a sti! (soft) case increases (decreases) monotonously with an increase in
the heterogeneous surface S. In a limiting case, when a whole shell becomes
non-homogeneous, an increase of K

d
reaches 25}30%.

In Figure 5 and 6, similar dependencies are given as in the (b) of Figure 1. The
character of the curves is an analogical one, but an increase of the K

d
coe$cient

does not achieve 10%. This means that an occurrence of non-homogeneity of
a shell located in its quarter exhibits a lower in#uence on the frequencies of the
shell, than with the non-homogeneity located in the centre.
Figure 4. Dynamical modes shell coe$cient (k
x
"k

y
"36) versus a surface of the square sti!ness

part located in the centre [see Figure 1(a)].

Figure 3. Dynamical modes plate coe$cient (k
x
"k

y
"0) versus a central sti!ness parts surface

[see Figure 1(a)].



Figure 5. Dynamical modes plate coe$cient (k
x
"k

y
"0) versus a surface of the sti!ness part

located in the quadrant [see Figure 1(b)].

Figure 6. Dynamical modes shell coe$cient (k
x
"k

y
"36) versus a surface of the sti!ness part

located in the quarter [see Figure 1(b)].

Figure 7. General surface sti!ness versus the parts number along one shell's side [see (Figure 1(d)
the &&perforation'' case].
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For a perforation type non-homogeneity [case (d) in Figure 1], note that the
perforation covers the shell in a regular way, and a square side is equal to the
distance between the successive parts. The sti!ness parameters are the same for all
parts. In this case it is appropriate to introduce the N parameter which corresponds
to the parts number along one of the shell's side and then to investigate a general
surface non-homogeneity. This relationship is shown in Figure 7.



Figure 8. Dynamical modes shell coe$cient (k
x
"k

y
"0) versus sti!ness part coe$cient

[see Figure 1(c); the ribb's wide 0,1)].

Figure 9. Dynamical modes shell coe$cient (k
x
"k

y
"36) versus sti!ness part coe$cient

[see Figure 1(c); the ribb's wide 0,1)].

Figure 10. Dynamical modes plate coe$cient (k
x
"k

y
"0) versus the sti!ness parts number

N along one of the plates side [see Figure 1(d)].

Figure 11. Dynamical modes shell coe$cient (k
x
"k

y
"36) versus the sti!ness parts number

N along one of the plate's side [see Figure 1(d)].
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Figure 12. Dynamical modes plate coe$cient (k
x
"k

y
"0) versus the sti!ness coe$cient of the

central sti!ness part [see Figure 1(a)].

TABLE 1

<ibration modes of a non-homogeneous [see Figure 1(a)] shell (k
x
"k

y
"36) versus

the sti+ness coe.cient c
1k

, c
2k
"1 of the part with the co-ordinates: x

1
"y

1
"0,4;

y
1
"0,6
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In Figure 8 and 9 the K
d

relationships for a plate (k
x
"k

y
"0) and for a shell

(k
x
"k

y
"36) and a sti!ness coe$cient c

1k
for a "xed wide rib (0, 1) and c

2k
"1

[case (c) of Figure 1] is given. The same earlier notations are used. It should be
noted that in the range of c

1k
considered, the changes in the dependence for a plate

is practically linear.



Figure 13. Dynamical modes shell coe$cient (k
x
"k

y
"36) versus the sti!ness coe$cient of the

central sti!ness part [see Figure 1(a)].

TABLE 2

<ibration modes of a non-homogeneous [see Figure 1(a)] plate (k
x
"k

y
"0) versus

the sti+ness coe.cient c
1k

, c
2k
"1 of the part with the co-ordinates: x

1
"y

1
"0,4;

y
1
"y

2
"0,6
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For a shell, the relationship has a non-linear character which in#uences more
higher modes. It is seen that an increase of the N parameter above 8 does not
change the dependence substantially. Therefore, a stabilization of relations are
expected for those cases.



TABLE 3

<ibration modes of a non-homogeneous [see Figure 1(a)] shell (k
x
"k

y
"18) versus

the sti+ness coe.cient c
1k

, c
2k
"1 of the part with the co-ordinates: x

1
"y

1
"0,4;

y
1
"y

2
"0,6
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In Figures 10 and 11 the relationship between the coe$cient K
d
and N for a plate

(k
x
"k

y
"0) and for a shell (k

x
"k

y
"36) are reported. The same notation

considered in previous cases is used. The curves below 1 correspond to softer plate
and shell with c

1k
"0,5; c

2k
"1. The curves lying higher than that denoted by

1 correspond to those sti!er (c
1k
"1,5; c

2k
"1) than homogeneous plate and shell.

Contrary to the relationships considered earlier the curves are more complicated.
A zone exists with distinct local maxima as well as a zone of coe$cient K

d
stabilisation. In the "rst case, for certain values of the parameter (N"1, 2, 3) the
sum of the surface of non-homogeneity has a critical value. In the second case
(N'4), an increase in the non-homogeneous surface does not in fact in#uence the
relationship because the increase of the surface is small.

Figures 12 and 13 the relationship between the dynamic modes coe$cient of the
non-homogeneous plate [Figure 1(a)] and the non-homogeneous shell
(k

x
"k

y
"36) and the sti!ness c

1k
(c

2k
"1) are shown.

Analysis of the "gures indicates that a sti!ness coe$cient in#uences the dynamic
modes coe$cient of a shell more than of a plate (it does not exceeds 5%).



TABLE 4

<ibration modes of a non-homogeneous [see Figure 1(c)] shell (k
x
"k

y
"36) versus

the sti+ness coe.cient c
1k

, c
2k
"1 of the part with the wide rib 0,1

FREE VIBRATIONS OF NON-HOMOGENEOUS SHELLS 717
In Tables 1}6 the form of homogeneous (c
1k
"1, c

2k
"1) and non-homogeneous

(c
1k
O1, c

2k
"1) plate (k

x
"k

y
"0) and shells (k

x
"k

y
"18; 36) for all nine modes

versus c
1k

are presented. The non-homogeneous form of Figure 1(a) corresponds to
Tables 1}3 with the non-homogeneous part co-ordinates x

1
"y

1
"0,4;

x
2
"y

2
"0, 6. Tables 4}6 correspond to the non-homogeneous schematic of

Figure 1 with the wide rib of 0.1. For comparison purposes, a case of homogeneous
plate or shell (c

1k
"1) is also included.

The mechanical approach used is not able to take account of any local
phenomena at the interface between two adjacent zone of the considered
non-homogeneous materials.



TABLE 5

<ibration modes of a non-homogeneous [see Figure 1(c)] plate (k
x
"k

y
"0) versus

the sti+ness coe.cient c
1k

, c
2k
"1 of the part with the wide rib 0,1
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APPENDIX A: INTEGRALS OF THE BUBNOV}GALERKIN PROCEDURE

The Bubnov}Galerkin procedure is applied to equation (19) in relation to the
spatial co-ordinates. As a result we obtain the system of di!erential equation in
relation to time and the system of the algebraic equations

n
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C

n
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ij
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vz
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3,vzijD, (A.1)

where +n
v,z/1

de"nes the number of equations. Below are given the integrals of the
Bubnov}Galerkin procedure:
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